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Abstract--This paper represents a new, accurate approach to solve radiative transfer equation for each 
discrete ordinates. The radiative transfer equations can be approximated as a linear system of partial 
differential equations if the source term is averaged within the domain of a finite control volume. Then 
these equations can be solved analytically by superposition for multi-dimensional problems. Conventional 
solution (diamond differencing) of the discrete ordinate method (DOM) may lead to negative fluxes, which 
is physically unacceptable. The proposed method (local analytical discrete ordinate method, LADOM) 
does not sulS~r from such a problem. The predictions of LADOM are well compared with that of zonal 
and conventional finite-difference methods. The proposed method is more accurate, free from oscillation 

and simpler to apply to multi-dimensional problems than the conventional finite-difference method. 

INTRODUCTION 

Recently, the discrete ordinate method (DOM) is get- 
ting more attention from researchers as a simple, accu- 
rate method of solving the radiative transfer equation 
in combustion systems. DOM is based on converting 
the integro-differential radiative transfer equation 
into system of partial differential equations. These 
differential equations are compatible with general 
fluid flow and heat transfer codes. Such a com- 
patibility makes the method powerful in combustion 
applications, where', the fluid flow, heat transfer and 
radiation fluxes are essential in the design and control 
of combustion systems. The discrete ordinate method 
was originally developed to solve Boltzmann neutron 
transport equations [1], and successfully adopted to 
solve radiative transport equation in combustion 
space filled with radiatively participating media [2-4], 
The efforts of the investigators can be classified into 
two categories, physical consideration and method of 
solution. 

As far as the physical situation and geometry is 
considered, the method applied to one, two and three- 
dimensional rectangular and cylindrical geometries [5] 
filled with gray or spectrally absorbing, emitting and 
scattering media. Recently, the method was adopted 
to furnaces with obstacles, such as cooling tubes and 
protrusions inside the furnaces. Adams and Smith [6], 
simulated radiative', flux distribution in a furnace with 
cooling tubes. Predicted fluxes were compared with 
experimental data and resolved highly-directional 
shadowing effects caused by the internal tubes. The 
authors concluded that the prediction accuracy 
depends on accurate specification of temperature pro- 
files rather than the detailed resolution of absorption 
or scattering parameters. Sanchez and Smith [71, 

presented results for a furnace with protrusions and 
obstructions using the discrete ordinate method. The 
method is based on deactivating the domain occupied 
by obstructions. This technique is similar to setting 
high viscosity in a solution of conjugated fluid flow 
and heat transfer problems using the control volume 
approach. The technique was detailed by Chaiet  al. 
[8], and applied to irregular geometries. 

The attention of other researchers was focused on 
the method of solution. The main method of solution 
used is based on control volume with central-differ- 
ence (diamond-difference) scheme and switches to the 
upwind scheme when an unrealistic flux is predicted 
(negative flux) [3, 4, 8]. Kumar et al. [9] presented a 
method to solve the radiative transfer equation for 
scattering and absorbing for a one-dimensional prob- 
lem. The method was based on an analytical solution 
of the governing equations using available two-point 
boundary value solver software (IMSL and NAG). 
But, no suggestion was made to extend the method to 
multi-dimensional problems. Fiveland and Jesse [10], 
used a finite element approximation to solve discrete 
ordinate equations. The method over estimates net 
radiative fluxes for a highly absorbing medium com- 
pared with the prediction of finite-control volume for- 
mulation and zonal method, unless fine elements are 
used near the boundaries. An interesting method was 
suggested by E1 Wakil and Sacadura [11], which was 
based on integration of the radiative transfer equation 
along the discrete ordinate. The integration leads to 
exponential variation of the intensity along that direc- 
tion, instead of linear interpolation as used by the 
conventional finite difference method. This method is 
similar to the power law scheme of Patankar [12], 
which was suggested for the solution of convection- 
diffusion equations. 
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NOMENCLATURE 

emissive power, nI [W m -2] 
incident e n e r g y ,  ~4n I d O [W m -2] #, 0, ( 
radiant intensity [W (m 2" Sr)-1] p 
nondimensional surface heat transfer a 
rate, G/Eb 09 

coordinate system [m] 
defined in equation 6a 
defined in equation 6b. 

Greek symbols 
scattering phase function 

O, fV outward and inward directions of 
radiation intensity 

6 Dirac function 
e surface emissivity 

absorption coefficient [m l] 
ordinate directions 

surface reflectivity 
scattering coefficient [m-1] 
weight function in a direction. 

Subscripts 
b blackbody 
m outgoing ordinate direction 
p control volume center 
e, w, s, n east, west, south and north faces 

of a control volume 
ba, f back and front faces of a control 

volume. 

The method presented in this paper can be simply 
applied to two- and three-dimensional problems. The 
main idea is to linearize a radiative transfer equation 
locally for each discrete ordinate. Then the equations 
can be solved by separation of variables or super- 
position of solutions. The method is free from oscil- 
lation and more accurate. The method is tested for 
two- and three-dimensional problems and results are 
compared with those predicted by zonal and con- 
ventional finite-difference methods. 

ANALYSIS 

The radiative transfer equation [13] can be written 
as, 

91 91 91 
#~x +r/~y + ~ z  = - (K+a)I+Xlb (1) 

+ . ( n '  --, o ) I ( n ' )  dO'. 

For a non gray model the intensity (I), absorption 
and scattering coefficients are functions of wave 
length. 

Considering diffusive emitter and absorber boun- 
daries, the boundary conditions are written as, 

Iw = ~/b + p- ~ [ n" l'~' [ I(•') dO'. (2) 
Jnft'<O 

The discrete-ordinates method is to transform the 
above integro-differential equations into a differential 
equation in a number of discrete angular directions, 
spanning the total solid angle of 4n steradiants. The 
discrete-ordinates of the radiative transfer equations 
can be written in Cartesian coordinates [5] as 

9/m 
+~" O~Z = --(X +~r)Im+xlb + Sm, 

(3) 

where 

S,, = ~n~[(1-rmj)Com~,,flJm ]. (4) 

Assuming that the source term (Sm) is constant 
within a control volume (averaged). Then equation 
(3) represents the set of a linear partial differential 
equation, which can be solved analytically. Let us 
assume that 

(x+cr)I,,,--xlb--S,,, = X ( x ) +  Y ( y ) + Z ( z ) .  (5) 

Substitute equation (5) into equation (3) and 
assume that source term (xlb+ S,,) is constant over 
each finite-control volume, then the solution for I,, is 

t c + a  K+cr  

I ra=(  0e ~. +Y0e ~-~ 

+ Z  o e - -~ ,~z+KIb+Sm)/ ( lC+f f ) .  (6) 

Using local coordinate for each control volume with 
x = y = z = 0 at the center of the control volume (Fig. 
1), then the X0, To and Z0 can be evaluated in terms 
of intensities at control volume faces. 

For a two-dimensional problem Z0 is zero and the 
expressions for X0 and Y0 are as follows: 

X o =  
a:+a K + ¢  

(x + a) {Im,w e-~- ay/2 _ I.,,~ } -- (Xlb + S.,) {eW- ay/2 _ 1 } 

and 

t c + a  to+or 
e ~  -Ax/2 + T A y / 2  - -  1 

(6a) 
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Fig. 1. Control volume. 

e tT y 

Y o  = 

(K + a){I~,~ e ~  a~/2 _ I.,w) - (KIb + S ~ ) { e ~  A~/2 _ 1} 

(6b) 

The intensity at the center, east and north faces of 
the control volumes can be written as follows; 

I,,,p = (X,, + Yo +r lb+S , , ) / ( x+a)  (7a) 

Im,e = (Xo e-  r:~x/2 + Yo + xlb + Sm)/(x + a) 

and 

Im.n = (Xo + Yo e -  ~.~-Ay/2 "4- K1 b + Sra)/(l£ "4- iT), 

0.7 

(7c) 

respectively. 
The procedure of solution is to start evaluating 

equation (7a) for control volume at one corner of 
rectangular domain with given boundary conditions. 
Then evaluate equation 7b and 7c which will be the 
boundary conditions for adjacent control volumes. 
Repeat the procedure for other control volumes and 
sweep the domain of solution along x- or y-direction. 
The above procedure should be repeated along each 
ordinate. The Appendix summarizes the equations for 
three-dimensional geometry. 

RESULTS AND DISCUSSION 

The accuracy of the LADOM is examined for two- 
and three-dimensional rectangular enclosures. A test 
is carried for difl'erent values of optical thickness 
between 1.0 and 10.0. Emitting, absorbing and scat- 
tering mediums are tested and compared with avail- 
able data. Prediction of LADOM is compared with 

the prediction of conventional DOM and zonal 
method. Previous tests [3,4] showed that $4 is a 
compromise between accuracy and computer time, 
therefore $4 is used for all predictions. Also, two sizes 
of control volumes compared, i.e. 10 × 10 and 20 x 20, 
for both LADOM and DOM method. Using a 30 x 30 
grid size does not reveal a significant difference in the 
prediction of fluxes compared with predictions using 
20 × 20 grids, unless otherwise stated. The following 
sections discuss results obtained by two- and three- 
dimensional problems, respectively. 

Two-dimensional enclosure 
The predictions of LADOM for two-dimensional 

enclosures are evaluated against predictions of con- 
ventional DOM and zonal method, for an absorbing, 
emitting and scattering medium. Three cases are con- 
sidered: 

(1) A square enclosure with unit length where all 
four walls are black with zero emissive powers is simu- 
lated. The medium is assigned to emissive power of 
unity. Figure 2a, b shows the comparison results for 
two values of optical thickness. For optical thickness 
of unity (Fig. 2a) the difference between the pre- 
dictions of two methods is insignificant and well com- 
pared with the exact solution of Lockwood and Shah 
[14]. For  optical thickness of 10.0, the DOM method 
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Fig. 2. Net radiative fluxes at the wall of a square cavity filled 
with absorbing-emitting medium, (a) optical thickness of 1.0 

and (b) optical thickness of 10.0. 
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Fig. 3. Net radiative fluxes at the hot wall of a square cavity 
filled with absorbing-emitting medium, (a) optical thickness 
of 1.0, (b) optical thickness of 2.0 and (c) optical thickness 

of 10.0. 

reveals an oscillatory prediction of  the heat flux dis- 
tribution for coarse control volume sizes (10 x 10), 
and oscillation diminishes by refining control volume 
sizes. L A D O M  compares well with the exact solution 
of  ref. [14] and does not  show any oscillatory pre- 
dictions for coarse control volume sizes. Also, the 
difference between 10 x 10 and 20 x 20 control vol- 
umes is insignificant. 

(2) A square enclosure with unit length where all 
walls are black with zero emissive powers, except one 
wall with emissive power of  unity (hot wall) is simu- 
lated. The medium is absorbing-emit t ing and in radi- 
ative equilibrium. The predicted results for optical 
thickness of  1.0, 2.0 and 10.0 are shown in Fig. 3a, b 
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Fig. 4. Net radiative fluxes on the hot wall of square cavity 
filled with scattering-emitting medium (a) surface emissivity 
of 1.0, (b) surface emissivity of 0.5 and (c) surface emissivity 

of 0.1. 

and c, respectively. The predictions of  D O M  and 
L A D O M  are compared with exact solution of  Raz- 
zaque et al. [15]. The L A D O M  predictions compare 
well with the exact solution. The difference between 
the prediction using 10 x 10 and 20 × 20 control vol- 
umes is not  significant for optical thickness of  1.0 and 
2.0, but for ~c = 10 the difference is significant between 
the predictions of  using 10 x 10 and 20 × 20 control 
volumes. Therefore, a 30 × 30 control volume is tested. 
For  an optical thickness of  10.0 the D O M  method 
prediction suffers from oscillatory heat flux dis- 
tribution for coarse control volume, this is not  the 
case with the prediction of  L A D O M .  

(3) A square enclosure with unit length filled with 
an emitting and isotropically scattering medium (i.e. 
~c = 0.0, ~r = 1.0) is simulated. Walls o f  the enclosure 
are gray and the different surface emittancy tested. 
One of  the walls has an emissive power of  unity (hot 
wall) and other walls are cold. The prediction results 
are obtained and compared for different emissivity of  
the walls surfaces (Fig. 4). This is important  because 
the boundary condition is not  only a function of  the 
surface emissive power but of  the incident radiant 
energy. Results of  predictions using L A D O M  and 
D O M  are compared with zonal results of  ref. [16]. 
For  the black body condit ion (e = 1.0), L A D O M  
results can be said to compare well with the zonal 
method. For  e = 0 . 5  and 0.1 the predictions of  
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L A D O M  and D O M  are consistent where there is no 
significant difference between the predictions of  both 
schemes. 

CONCLUSIONS 

A local analytical method is present as an alter- 
native method of  solution of  the discrete-ordinate 
radiative transfer equations instead of  the con- 
ventional finite-difference method. The method is 
based on an analytical solution of  a multi-dimen- 
sional, linearized equation. Hence, it is more accurate 
than linear-interpolation of  the intensity within each 
control volume. The tests demonstrate that L A D O M  
does not  lead to a physically unrealistic solution 
(negative flux). Also, L A D O M  does not  reveal any 
oscillatory flux prediction in an optically thick 
medium. The method is in expensive computationally 
due to evaluation of  exponential terms, but  it is more 
accurate than the conventional finite-difference 
method. The test showed that 10 × 10 control volumes 
are sufficient enough to produce accurate results, 
except for an optical thickness of  10. Accurate results 
require 20 x 20 control volumes. The method can be 
applied for an emitting, absorbing and scattering 
medium without any difficulty. 

Three-dimensional enclosure 
Menguc and Viskanta [13] presented results for a 

three-dimensional furnace of  dimensions 
4.0 x 2.0 x 2.0 m, with firing wall at 1200 K and with 
emissivity of  0.85, exit wall at 400 K with emissivity 
of  0.7, and other walls at 900 K with emissivities of  
0.7. The optical thickness of  the medium is 0.5 m-~. 
The medium has a source power of  5.0 kW m -3. 
Figure 5 shows the comparison of  temperature dis- 
tribution perdition by two methods with the results of  
Menguc and Viskanta. The prediction of  both 
methods are consistent and compare well with the 
results of  ref. [13]. Figure 6 shows the heat flux dis- 
tributions at the firing and cold end walls predicted 
by L A D O M  and D O M  and are compared with the 
results of  ref. [13]. L A D O M  predictions are more 
accurate than predictions of  D O M  if the results of  
Menguc and Viskanta are assumed as a basis of  com- 
parison. 
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APPENDIX 

The necessary equations for three-dimensional problem are: 

(xlb + S,,)(g + h - g h - -  1) + (x+ a)[l,,s(1 - g )  + l~,s(1 - h )  + l, , . ,( .qh- 1)1 
X 0=  

2 - - f - -  g -- h - f g h  

( x l b + S m ) ( f + h - f h -  1)+ (x+ a)[Im.f(1-f)+I, , .s(hf- 1) + Ira.w(1 -h ) ]  
Yo 

2 -- f - -  g -- h - f g h  

(Xlb + Sm)( f+g- - fg - -  l) + (x +a)[I,.,r(fg-- l) -~ Im.$ (1 --f)  + I.~,. (1 --g)] 
Z 0 - -  

2 - - f -  g - h - f g h  

where 

= x+aa /2 e~AZ/2. f = e r ~  z~/2, g e ~ -  y and h =  

The radiative intensities at the center, east, north and back faces of the control volume are 

Im,p = (Yo "~ go "~ Zo -~" Klb ~- Sm)/(X + a ) ,  

- r + ¢  A 
Ira, e = (X  o e"'-7- x/2 + Yo + Zo + xlb + S,,)/Oc + a), 

Im,n : (So ~- Yo e ~  Ay/2 ~- Zo -Jr ~.I b -~ Sm)/(• ~- ~), 

and 

Im.~ = (Xo + Yo + Zo e ~  ~/2 + xlb + Sm)/(x + a), respectively. 


